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ABSTRACT

Let G be a simple Chevalley group of rank n and
I' = G(F4[t]) . Then the finiteness length of T shall be determined by
studying the action of I' on the Bruhat-Tits building X of G (Fq((%))) .
This is always possible provided that certain subcomplexes of the links
of simplices in X are spherical. As a consequence, one obtains that T’
is of type Fn—1 but not of type FP, if G isof type Ay,,Bn,Ca or
D, and ¢> 2271

Introduction

Important finiteness conditions for discrete groups are the almost equivalent
(whether they are in fact equivalent, is still not known) properties FP, and
F, . Recall that a group is said to be of type FP, iff there exists a projective
resolution of the trivial I'-module Z starting with n + 1 finitely generated
projective modules. T' is by definition of type F,, iff there exists an Eilenberg-
MacLane complex K(T',1) with finite n-skeleton, i.e. (cf. [Brl], ch. VIII, §7)

iff T isof type FP, and finitely presentable for n > 2.

Now some famous results based on reduction theory and due to Raghunathan
(cf. [Ra]), respectively to Borel and Serre (cf. [BS1], [BS2]) imply that T is
always of type Fo (:= F, for all n) if T' is an arithmetic group or if T’ is an
S-arithmetic subgroup of a reductive group which is defined over a number field.
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Things are quite different in the function field case. For example, SLo(F,[t]) is
even not finitely generated (cf. [N]). In [Bel], Behr proposed and in [Be2], he
gives a proof for a complete classification of all finitely presentable S-arithmetic
subgroups of reductive groups over global function fields involving the local ranks
of these groups. By the way, the finitely presented S-arithmetic subgroups of
arbitrary algebraic groups over number fields were characterized by Abels (cf.
[Ab1]).

By contrast, only a few facts are known concerning higher finiteness properties
of S-arithmetic groups in the function field case, if the global rank of the reduc-
tive group is greater than 0. (Using Harder’s reduction theory, Serre settled the
anisotropic case in Théoréme 4 of [Se]: Here T' is always “cocompact” and hence
of type F .) In [Stu], Stuhler showed that SLz(Os) is of type F,_; and
not of type F P, for every S-arithmetic ring Qg with #S = s. On the other
hand, SLn4+1(Fg[t]) is of type F,_; and not of type FP,, provided that g
is “big enough” (cf. [Abrl], [Ab2]; why one is forced by the method of the proof
to impose certain restrictions on ¢, will become clear in section 2.3 below).

In this paper, we will be concerned with the following generalization of the last

mentioned result:

CONJECTURE: If G is a simple Chevalley group of rank n , then T = G(F,|t])
is of type F,_1 but not of type FP, .

In the following, this conjecture will be proved for the four classical infi-
nite series of Chevalley groups, again provided that ¢ is big compared with
n. As in [BS1}, [BS2], {Stu], [Abrl), [Ab2] and [Be2], it will be important to
study the action of T' on the space “naturally” associated with T, i.e. on
the Bruhat-Tits building X of G (F,((}))) in our case. The quotient X/T
being non-compact, one has to do some extra work in order to derive finite-
ness conditions for I' . The approach of [BS2], namely compactifying X by
adjoining the spherical building at infinity, doesn’t look very promising in our
situation because the stabilizers of the ideal simplices at infinity possess bad
finiteness properties. Therefore, the method introduced by Stuhler and also used
in [Abrl], [Ab2] and [Be2] will be applied: We filter X = {Jzen, Xa by I-
invariant subcomplexes X, with compact quotients Xg4/I' and investigate
the homotopy properties of the inclusions X4“——Xy41 . This leads to the
study of the local structure of X and in particular to the question whether



Vol. 87, 1994 CHEVALLEY GROUPS 205

certain subcomplexes of spherical buildings are spherical, themselves. Using
the answer to this question given in [AA] and in [Abr2], a criterion of Brown
(cf. [Br2]) implies the desired finiteness properties of T .

The paper is organized as follows: In Section 1, we put together the facts
concerning Bruhat-Tits buildings as far as they are needed here. We start by
reviewing some results of [BT1] in sections 1.1 and 1.2. In 1.3 we study the action
on A, of the stabilizer Py of aray [z[C X with origin z, where A, is the
link in X of the simplex generated by x. This is of some relevance, because
Pp;; acts in the same way on A, as I'; = Stabr(z) , as we shall see in section
1.4.  Section 1 may be of some interest in its own right, because it yields a nice
example for the interplay between group theoretic, combinatorial and geometric
aspects of Bruhat-Tits buildings. Furthermore, a more elementary proof for a
theorem of Soulé (cf. [S], Theorem 1) describing the “reduction theory” for the
action of I' on X is indicated in the remarks following Corollary 3.

In Section 2 it is shown how finiteness properties of I' may be derived from the
action of T" on X . For this purpose, the I'-invariant filtration X = UﬂleN0 X4
introduced by Abels in [Ab2] while investigating SLn4+1(F,[t]) is recalled in
section 2.2. In order to study the homotopy properties of X ~——Xg4; , it
is now essential to determine the “relative links” fkx,(p) of certain simplices
p € Xgp1 > X4 . In his paper, Abels did this by using some special features of
the A,-case (cf [Ab2}, §5). A different approach which works for all Chevalley
groups is presented in section 2.3. It uses the action of ', on ¢kx(p) and the
results of Section 1. It turns out that the subcomplexes ¢kx,(p) of the spherical
building £kx(p) are among those which are studied in [AA] and [Abr2] (in fact,
this is the main reason why these papers were written). In particular, they are
homotopy equivalent to bouquets of spheres if G is of type A, By, Cn, or D,
and if ¢ is big compared with n. Therefore, by applying a special version of
Brown’s criterion which is stated in 2.1, we obtain the results announced above
in section 2.4.

The main ideas and most parts of the argumentation underlying the present
paper were developed during a stay at the University of Bielefeld in 1989/90
when I was a guest of the SFB 343. Now, as the paper is written down at last,
it is a pleasure for me to thank this institution for the opportunities it offered
to me and Herbert Abels for his kind invitation. Finally, I would like to express
my thanks to him and Helmut Behr for several stimulating discussions on the
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subject which is treated here.

1. The Bruhat—Tits building
1.1 PRELIMINARIES. Unfortunately, we shall need a lot of notations throughout

this paper. To begin with, we denote by

1% an n-dimensional real vector space, endowed
with an inner product (-,-): V x V—R,
identified with its dual space V* by means of
(-, -) and sometimes also considered as an affine
space

® an irreducible and reduced root system (of rank
n)in V

I a base of ®

iRy the corresponding subset of all positive roots
of ¢;
¢ = -+

W =W(®) the (finite) linear Weyl group of @

W = W,g(®) the (infinite) affine Weyl group of &

G =G(®) a simply connected Chevalley group of type @,
defined over Z

T a maximal torus of G with normalizer N

U, the one-dimensional unipotent subgroup of G
associated to a € ®

Zo: Add U, the corresponding isomorphism
(Add = additive group)

Ut=J1U, ad U =1]]U,

acdt aed-

G &—SL,. a faithful representation of G such that T
becomes diagonal, U' upper and U~ lower
triangular

K a (commutative) field endowed with a discrete

valuation w: K -—»ZU {oo}
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O ={) € K|w(X) >0} the corresponding discrete valuation ring
w a prime element in @ ,ie. w(7)=1
k=0/r0 the residue class field associated to (K,w)
G =G(K) CSL.(K) the group of K-rational points of G

G(R)=GnNSL,.(R) the subgroup of G associated to a subring
RCK

Further notations are

T=T(K), H=T(0), N=N(K)=Ng(T),
Us = Us(K) = {zs(A)| A€ K} (e € ®) and
B=UY0)HU (r0) .

(T, (Us)aca) constitutes a generating root datum (“donnée radicielle”) in G
(cf. [BT1], exemple 6.1.3 b)). Furthermore, w induces a valuation ¢ of
(T,(Uz)aca) (cf. [BT1], exemple 6.2.3 b)). According to [BT1], section 6.5
(compare also [IM], §2), G possesses a “double Tits system”. Note that the
group denoted by G’ there coincides with G in our situation because G
is simply connected. In particular, the groups B and N introduced abaove
constitute a BN-pair for G with Weyl group N/H =W .

We denote by A = A(G,B) (notation as in [Br3}, section V.3) the associated
affine building, by Cy the “standard chamber” fixed by B and by ¥y the
“standard apartment” stabilized by N . The geometric realization |Zg| of X
will be identified with V' in such a way that the vertex with stabilizer G(0)
becomes the origin of V' and that the cone {J,5¢A|Col is equal to the closure
of the Weyl chamber corresponding to II .The set |A] will be endowed with the
metric introduced in [BT1], section 2.5. The metric space X = |A| is called the
Bruhat-Tits building of G (relative to ¢). Note that the topology of X
coincides with the usual CW-topology iff A is locally finite, i.e. iff k is finite.

1.2 STABILIZERS AND LINKS. Recall that the set of hyperplanes
H ={Lam|a€® mel}

where L, ., = {zr € V| (a,z) + m = 0} , induces a partition of V into cells
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(“facettes”). For every cell F CV we denote by F its closure, by or € 5
the simplex with |or| = F and by Pr the stabilizer Pr := Stabg(F) =
Stabg(F) = Stabg(or). To every point z € V we associate the cell F,
containing z , the simplex o, = o, and the stabilizer Px = Stabg(x) = P, .
If we define U, := {za(A)| w(A) > €} (a € ®, £ € R), we obtain (cf. [BT1],
Proposition 6.4.9) Us N P: = Uy _(a,r) and

It

(1) P, H(Ua)_(a,x)l ac (I))

H Uax_(av't) ' H Ua,—(a,z) * (N N PI)'
a€dt acd—

Furthermore, there exists a normal subgroup P 4 P, such that
Uy N P = {za(A)| w(A) > —(a,2)} =: Uy _(a,c)4 forall a€ ® and

2 P =HNP)(Us-(an)+la€?®

= H Ua,—(a,m)+ : n Ua,-—(a.x)+ ' (H n P;)
a€dt+ acd-

(cf. [BT1], 6.4.23, 6.4.27 and 7.2.7). Define G, := P,/P} , denote by
px . Px—» Gy the associated epimorphism and set

&, := {a € ®| (a,z) € Z}, T :=p.(H), U, = ps (Ua,(a,2))
forall a€ ®, .
Applying Proposition 6.4.23 of [BT1], we get:
LEMMA 1: (T,(Us.)aco.) is a generating root datum of type ®, in G, .

Lemma 1 implies, as we shall see immediately, that the subgroup 52 =
(Ui a € ®,;) of G, is a Chevalley group in the sense of [St]. First of all,

we have
Ua = a,—(a,m)/Ua,—(a,z:)+l = :-A_dg_(k) forall a€®,.

Set T4(A) := pz(za(r~(@®IN)) for A€ O, X € k and verify the usual Steinberg
relations, those corresponding to Steinberg symbols included (cf. [St], §6). In
this way we obtain a well-defined epimorphism f: Gg(k) —-»—@2 , where G,
denotes the simply connected Chevalley group (scheme) of type ®.. Because f
is compatible with the respective root data of G(k) and ﬁ‘,’ , parabolics which
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are mapped onto minimal parabolics by f are minimal, themselves. Therefore,
ker f has to be contained in a minimal parabolic subgroup of G.(k) and hence
in the center of G;(k) . To summarize:

COROLLARY 1: If G, denotes the simply connected Chevalley group of type
®, then G.{k) is a central extension of 52 =(U,} a € ®,).

This group theoretical result may be translated into a statement about the
local structure of A : Recall that the link of ¢ € A in A is defined to be the
subcomplex fka(c):={r € Al TUg € A and 7No =@}. If o is contained in
Co then B = Stabg(Cp) and NNP constitute a BN-pair for P = Stabg(o).
It is easily checked that fka(o) may be identified with the building A(P, B)
in this case. If z € V = |Zp| is arbitrary, we choose a chamber C € ¥y such
that x € |C| and obtain Ay := fka(ox) = A(Px,Pc) because A may be
described as A = A(G, Pc) as well. Formulae (1) (applied to an element z’
of the interior of |C| which is close to «) and (2) above imply P; C Pc. This
allows us to identify A(P,, Pc) with A(G.,Pc/P}) which is the spherical
building associated to (T, (Us)ace,). Finally, Corollary 1 and the discussion
preceding it show that A(G, Pc/P) is isomorphic to A(®z,k) := A(Gq, k),
the building of G over k in the sense of [T1], §5. Therefore, we obtain as a
further consequence of Lemma 1:

COROLLARY 2: A, = lka(o,) is isomorphic to the spherical building A(®, k)
associated to Gz (k) .

I will conclude this section by remarking that deeper results concerning group
schemes attached to points of X may be found in [BT2], section 4.6.

1.3 SOME GEOMETRY CONCERNING D. Let D be the Weyl chamber corre-
sponding to I ,ie. D={2€ V| (a,2) >0 Vae€ll},andlet z # 0 bean
element of the closure D. For reasons which will become clear later (cf. Lemma
5), we are interested in the subgroup Pj[:= (5>, Pz of P: . In particular, the
action of Py on A, will be studied. Before aoing this, we have to introduce
some terminology:

Set Mz := {La,—~(a,c)] @ € o} = {L € H| z € L} . Choose an open ball U
with center = such that UNL =0 forall L € H~H, . Then UNn(z+ D)
is a nonempty open convex subset of V' satisfying Un{(z+ D)NL =9 for all
L € H. Hence, there is a unique open n-cell C = C,,p containing UN(z+ D).
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Now consider the ray [zf:= {A\z] A >1}. Then z€ D and Un(z+D)CC
imply [z[NC # {z} . Therefore, we may define a point y € [z[~{x} by setting
[z,y] = [¢[NC. (I use the notations [z,y]:= {(1-A)z+Ay|0 <A <1}, [z, 9=
[z,y] ~{y} and so on.) Furthermore, we introduce the simplices oy ) := 0-U0oy
and By := 0y ) N0 € A,

Recall (cf. Lemma 1) that G := G, possesses a Tits system, that

B:=T [[ Ua=p(Pc)
acdtnd,

is a minimal parabolic subgroup of G and that A(G,B) is isomorphic to
Ay = lka(oz) . What will be proved next is the fact that the parabolic subgroup
pz(Plz[) is the stabilizer of oy in G.

LEMMA 2: Set ®° := {a € ®| (a,z) =0}. Then
BW(®2)B = p=(P)) = p=(P: N P,) = Stabg(?,) =: Py.

Proof: First we list some consequences of [BT1], 6.4.9, 6.4.10 and 7.4.4, namely,

Py = H(Us~(az)) a € BT U ®0)
= [l Usetaeyr Il Uso- (NNPg),
acd+ a€®- NP2
NNPy = NNH(Usola€®)) and
(NN Pg)/H=W(2]) .

These equations imply B W (®2)B = p(Pj(). The inclusions
p:t(P[a:[) c pa:(P:c N Py) - Fy

are obvious. So it suffices to show rkBW(®2)B = 1k P,, where the “rank” of
a parabolic subgroup P is by definition the maximal natural number £ such
that there exists a strictly increasing chain of parabolics of the form P, C P, C
.-+ C P, = P . Hence

rk BW(®%)B

I

rk 0 (:: dimR{ T Xaa| Ae € R}) and

a€d?

rk_Py = rka—#ﬁy=rk b, — #0y .
But #7,, the number of vertices of 7, is easy to calculate:
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dim |o|

dim |o 4|

Therefore,

CHEVALLEY GROUPS

dimF, =dim ) Lo _(az)
a€d,

N Lao) =n-1k 2,

dim (::: +
a€d,

dim ) L=dim L
[z.y]CLeH [0,z]CLeX

dim () Lgo=n—r1k 82.
acd?

#o, = #U[m,y] — #0, =1tk $, — 1k @2,

tk P, =1k 0 and P,=BW(®)B.

211

In Section 2, we shall also need a result concerning the construction “opposite”

to that we have discussed so far. Let C~ = C; _p be the n-cell containing
Un(z—D) andset Jz]:={Az| A <1}. Define y~ by [y~,2] =]z)nC~ and

Gy- €Az by Ty- =0y o) N0z -

but y~ certainly is.

=/

tain:

Figure 1

LEMMA 3: o, and G,- are oppositein A .

Proof: Because

dimloy- o/ =dim (] L=dim [)

the same argumentation as ini the proof of Lemma 3 shows

[y—.z]CLEH [z,y]CLeH

Stabg(ﬁy-) = pm(ﬁz]) =B W(@g)—g_ .

Denote by k,k~

L = dim }a[x,y]| ,

Note that C~ needn’t be contained in D

the chambers of A,
such that || € C, |«~| C C-, respec-
tively (see Figure 1, where z is a ver-
tex). Then Stabg(k) = B, Stabg(k™) =
Tl.co-ne, Ua =: B . This shows that
% and Kk~ are opposite chambers of A, in
the sense of [T1], 3.22. Besides, we ob-
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Denote by wo € W(®,) the unique element with wo(®* N®,) =" Nd, . It
follows that

Stabz(F,-) = wo(Bwy 'W(®2)wo B)wg ! .

Comparing types, we see that this is also the stabilizer of the simplex opposite
to &, in the apartment Lo N A, (cf. [T1], 2.39, and [R], Lemma 6.1). Hence,
0,- is this simplex. |

1.4 AN ALTERNATIVE DESCRIPTION OF p,([;). In the following, we consider
a more special situation:

K = k(1) is the rational function field over k

0o is defined by w(*g) :=degg—deg fVY 0 # g, f € k[t]

3 €
i

i

= £

H

G(K[t])
The notations introduced so far will be kept. Additionally, we set

T, :=Stabp(z) (¢€Xorz€A) and Tq:=[|T: (2CX)
z€}

The significance of the sector (“quartier”) D in this situation comes from a
result which is due to Soulé (cf. [S], Theorem 1):

LEMMA 4: D is a fundamental domain for the action of T on X and the
simplicial complex F C ©o with |F| =D is a simplicial fundamental domain
for the action of T' on A.

We shall also need the following
LEMMA 5: pg(Ty) = pe(P) forevery =z€ D~{o0}.
Proof: By the definition of P} (cf. [BT1], 7.2.7),
H =T(0)=1(k) (HN P;)
and hence pz(H) = p-(T(k)) C pz(Tz) =: T, . Furthermore,
Ua = po({za(77@®N)| A€ k}) C T, foralla € (&1 N &) U B

Hence pz(P[z[) CT,.
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We shall show that T, cannot be strictly bigger than p.(Pjy[) - Suppose it
were. Then there would exist a root b€ (#~ N®,)~ &% such that U,cT, .
In particular, there were ut € UtNPr,u~ € U"NP!, h€ H and v €T such
that zy(7~(®®))u~ut h =+. An easy calculation using O* Nk[t] = k* shows

U7 (K) U (K) T (0) N SL(kft]) = U7 (k[t]) U ([t)) T (k) -
Therefore, we would obtain

wi=ap(r" Ny e U NI = H Ua (k)
a€d—
(the last equation follows from Lemma 49(b) in [St]). On the other hand,
—(b,z) >0 and
u € zp(n~ Ny _(5.2)41 H Us
a€d- ~{b}

imply v ¢ [] Ua(k[t]), a contradiction. ]
a€®—

The title of this section refers to the following consequence of Lemma 2 and
Lemma 5:

COROLLARY 3: p,(T;) =P, .

Remarks: (i) The origin was excluded in Lemma, 5 in order to get a well-defined
ray [z[. Of course, po(T'o) = po(Po) = po(G(O)) is easy to prove. Using the
definition of H N Py , it is also possible to identify this group with G(k) .

(ii) Lemma 5 is an immediate consequence of ', = I'z[ , an equation derived by
Soulé in section 1.1 of [S]. His proof depends on the technically rather complicated
§9 of [BT1], where the proof of the result he refers to is only sketched. Therefore,
I preferred showing p.(Tz) = pz(P() differently. Having done this, we can
easily deduce 'y C PPy C Py, I, €Ty, I, = [z and, “by induction
along [z[”, Ty =Ty -

(iii) The identity p () = BW(®%)B is the key argument in the proof of
Theorem 1 in [S]. By modifying section 1.3 of [S] as well, it is possible to derive
this theorem (which we quoted as Lemma 4) more elementary without referring
to §9 of [BT1]. |

As was already pointed out by Soulé, a further consequence of I'y = I'fyp is:
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COROLLARY 4:

T, =T(k) - (Ua(k) e €®)- I {za(f)l f € kltland deg f < (a,2)}.

agdt ~ &9

In particular, T, is finite iff k is finite.

2. Buildings and finiteness properties of G(F,[t])

2.1 BROWN’S CRITERION.

Let T' be a group and let X be a I-CW-complex, i.e. a CW-complex on
which T' acts by homeomorphisms permuting the cells. In this section, we shall
recall some conditions derived by K.S. Brown (cf. [Br2], Corollary 3.3(b)) which
allow to determine the finiteness length of I'.

The specialization of Brown’s criterion stated below is adapted to the require-
ments of certain applications. A similar lemma was already discussed in [Abrl],
§2 (cf. also [Ab2], Lemma 4.2).

Before stating the criterion, I wish to recall a notion introduced by Quillen
(cf. [Q], section 8) which will be crucial in the following:

Definition 1:

(i) An m-dimensional CW-complex is called m-spherical iff it is homotopy
equivalent to a bouquet of m-spheres, i.e. iff it is either contractible or
non-contractible and (m — 1)-connected.

(ii) A simplicial complex is called m-spherical iff its geometric realization is
m-spherical.

LEMMA 6: Let X be a [-CW-complex. Suppose that the following holds:
(a) X is contractible.
(b) The stabilizers T, are finite for all cells o .
(¢) X =Ugen, Xa with T-invariant subcomplexes Xy which are finite mod
I forall d.
(d) Xa41 = XaUU;ey, Si,a with contractible subcomplexes Sia such that
(1) S;ianS;aCXq Vi#jd
(i) Si,gN X4 is (n—1)-spherical Vi,d.
(iii) There exist infinitely many d such that S; 4N Xy is non-contractible
for at least one i€ I .
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Then T is of type F,_1 but not of type FP, .

If T = G(F,[t]) andif X is the corresponding Bruhat-Tits building then
it is well known that condition (a) is satisfied (cf. [BT1], Propsition 2.5.16). The
second assumption follows from Corollary 4 (and is of course well known as well).
After one has constructed a suitable filtration of X, condition (d) (ii) is hardest
to verify. This task splits into two parts:

Firstly, one has to describe the intersections S; 4N Xy explicitly as sub-
complexes of certain spherical buildings. We will do this in section 2.3. Secondly,
the homotopy properties of these complexes have to be determined. This part re-
quires completely different methods and will, therefore, be treated elsewhere (cf.
[AA] for the A,-case and [Abr2] for subcomplexes of other spherical buildings).

2.2 ABELS’ FILTRATION. Let A be a building. Fix a chamber Cy . Denote
by d(C,C") the gallery-distance between two chambers C' and C’ of A . Set

d(o,0’) := min{d(C,C")| ¢ C C and ¢’ C C'} for simplices 0,0’ € A and

d(A, B) := min{d(o,7)| 0 € A and 7 € B} for non-empty subsets 4, B C A.
Assume additionally that we are given a group T' acting (by simplicial auto-
morphisms) on A together with a subcomplex F C A containing Cp which
is a simplicial fundamental domain with respect to this action. Then there
exists a simplicial retraction 7: A — F mapping every simplex o onto the unique
element of T'o N F.

Following [Ab2], §2, we define a T'-invariant filtration of A by setting
(3) Ag:={o€Ald0,TCo)<d}, de N
Note that d(o,I'Cy) = d(ro,Cq) implies
(4) Ay =TF,; with F;:= {r € F| d(r, Co) < d} .

By Lemma 2.4 of [Ab2], every chamber C € Agy1 ™ Aq contains a simplex
RY(C), called the “I-restriction of C”, which satisfies

{oCCloeA}={ocCC|o2R(C).

We set Ray;:= {RY(C)| C is a chamber in Agy; N Ay} and associate to every
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p € Ry the following subcomplexes of A :

S(p) = slagy, (p) = {oelloUpeAynl},
T'(p) =tkag,(p) = {o€S(p)onp=0}
T(p) :=S(p)NAq.

LEMMA 7: With the notations introduced above the following holds:
(1) Ady1 =284UUer,,, S(p),
(ii) S(p)NS(p') CAa Y p#p € Rayy,
(iii) T(p) = p*T'(p) , where dp:= {0 C p| o # p} and “«” means “join”,
(iv) T'(p) = T'(rp) VY p€ R4y1 and
T'(p) =T p{o C proj,ColoNp=0} Vpe€ Ry 1NF.

Proof: Statements (i) — (iii) are due to Abels (cf. [Ab2], Lemma 4.2). The
isomorphism in (iv) follows from T'(yp) = vT’(p) for all y €T.

Now assume p € Rq41 N F. Denote by C := proj,Co the projection of
Co on p (cf. [T1], 3.19),i.e. C is the unique chamber satisfying C D p and
d(C,Cp) = d(p,Cp) . Then d(p,Co) = d(p,T'Cy) = d+ 1 implies C € Agyy
and hence I',{oc CC|lonp=0} CT'(p) .

Conversely, let 7 € T'(p) be given. Choose a chamber C’ € Ag4; such
that TUp C €' . Then d(rC',Cy) = d(C',TCy) < d+1 and p C rC’
imply rC’ = proj,Co = C . Hence there exists a v € I' such that vC'=C .
Furthermore, vp C vC’' =rC’ € F implies v € I', . This shows

r:'y'l('yT)GI‘P{O'QC,O'ﬁp=@}. |

2.3 THE RELATIVE LINKS. We now return to the situation described in section
1.4, assuming additionally k = F,. In particular, A = A(G,B) is an affine
building, T' = G(F,[t]) and F' is the simplicial fundamental domain introduced
in Lemma 4.

We wish to apply Lemma 6 to the I'~-CW-complex X = |A| by setting
Xq := |Aq|, where A, is defined as in (3). Note that condition (c) follows
immediately from (4). Furthermore, Lemma 7 (ii) implies (d) (i) if we define the
S;a to bethe |S(p)| for p€ Rayi .

As already mentioned, our next task consists in determining |S(p}|N X4 =
|T(p)|. In view of Lemma 7 (iii), we only need to know T"(p) and in view of 7 (iv),
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we may assume p € Rgp1NF . Choosing a point z € D such that p =0, , we
therefore have to describe T'(p) as a subcomplex of fka(p) = Az = A (P, Fy)
(cf. Corollary 2). This will be done by using the results and the notations of
sections 1.3 and 1.4. In the following, the relation “o is opposite to 7" will be
abbreviated by “c op 7”.

LEMMA 8: Let p€ Rgy1NF, z €D and Gy € A; be given such that p = o,

and G, is defined as in Lemma 2. Then one gets

T(p)= | sta.(r)=: A3,) -
T op Ty
Proof: Set C := proj,Co € F (this chamber C has to be carefully distinguished
from the open cell C = C, p in section 1.3!) and recall T'(p) =T',{oc C C ™ p}
(c¢f. Lemma 7 (iv)). As a first step in our proof, we have to determine “the
position of |{C~p| relative to |p| in D”. Note that C~ p needn’t coincide
with the simplex we called k= in section 1.3. But in any case, C \ p contains

the simplex 7,- of Lemma 3 as the following geometric reasoning shows:

CramM: y~ € |C]. This follows from three simple observations. First of all,
[y~,z) is contained in a closed cell. Hence F, D [y~,2] for every z €ly~,zl.
This implies:

(@) |C'Nly~,z[#0 = [y~,z] C|C’| V chambers C' € L.

Next we consider the “convex hull” ¢ of Cy and C,i.e. the set of chambers
C := conv {Cyq, C} := {C' € £o| d(Cy,C’) +d(C’',C) = d(Cp,C}. Then |C|:=
Ucrec IC’] is an intersection of closed half-spaces (cf. [T1], Theorem 2.19) and
hence a convex subset of |Zo| =V . Therefore, we obtain

(b) [0,z)<cC|.

On the other hand, d(Cy,C’) > d(Cy, p) = d(Co,C) holds for every chamber
C' containing p and hence

() ze|C'| & C'=C VC'ec

Obviously, (a) - (c) imply y~ € |C| . Therefore, o,- CC and 7,- CCNp.
In view of pz(T,) = pz(I';) = Stabg () (cf. Corollary 3) and in view of the
fact that &, and &,- are oppositein A; (cf. Lemma 3), T',{c CC\p} =
Uropz, Sta.(7) is now a consequence of the following lemma.

LEMMA 9: Let A be a group acting type-preservingly and strongly transitively
(in the sense of [Br3], section V.1) on a building © of spherical type. Then for
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every o € ©, A, := Stabs(o) acts transitively on the set

{C €©|C isachamberand 37 CC suchthat 7opo}

Proof: It follows from the assumptions that A, acts transitively on the set of
all apartments containing o. Every such apartment contains exactly one simplex
opposite to o. Hence, A, acts transitively on the set of all these simplices.

Now let 7 be a simplex opposite to ¢ and let two chambers Cy,C; €
ste(r) be given. Then there exists an apartment ¥ containing C;,C; and o:
Set Cj :=proj,Co . Then Cj = proj,C} (cf. [T1], Theorem 3.28). Therefore,
an apartment ¥ containing C; and Cj contains Cs, too. Now we set N :=
Stabs(X). According to the assumptions, there exists an n € N, := Staby(7)
such that nCy =Cs. But N, =N, C A,. |

As a first consequence of Lemma 8, we now obtain condition (d) (iii) of
Lemma 6:

COROLLARY 5: There are infinitely many d € N such that |T(p)| is non-
contractible for at least one p € Rgy; .

Proof: If dimp =n -1, dimfka(p) = 0. Then Lemma 8 implies T'(p) =
Az {7y} which consists of at least two points. Hence |T'(p)| = |8p *x T'(p)| is
non-contractible in this case.

Now there are infinitely many d such that Rg4.; contains elements of
dimension n — 1: Let v be an arbitrary vertex of F, say of type i, such that
sty,(v) C F . Set C':=proj,Co and let C be the chamber “opposite” to C’
in stg,(v),ie. C~{v} and C’'~{v} are opposite in fks,(v). Then the usual
restriction R(C) of C with respect to Cp , i.e. the smallest simplex ¢ C C
satisfying d(o, Co) = d(C, Cy), is obviously the panel of cotype i of C. Finally,
C € F implies R'(C) = R(C). [

In the following, we fix the notation already introduced in Lemma 8 and
use it in order to distinguish certain spherical buildings:

Definition 2: Let © be a building of spherical type.
(i) For every simplex o € © , we set ©%0) := |J ste(r) . Note that

Topo
0%(@) = © is admitted here.

(i) We say that © possesses property (S) if ©%¢) is dim ©-spherical for
every 0 €0 .
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Remarks: (i) The well-known Solomon-Tits theorem states that © = ©°(f) is
always spherical. Furthermore, ©%¢) is “highly symmetrical” and “contains
almost all of ©”, usually (if © is “big enough”, “almost all” chambers are
opposite to a given chamber). So one may hope that every spherical building
possesses property (S) . But this is, unfortunately, not true. For example, if
© = A(A3,F;) and C € © is a chamber, then |0°(C)| is a torus (cf. [T2],
Remarque 16.7.5 or [AA], Example 3.1). Some further counterexamples are listed
in [AA] and in [Abr2].

Nevertheless, it seems to be true that © always possesses property (.5)
if © is “thick enough”, i.e. if every panel is contained in sufficiently many
chambers. At least it is possible to verify property (S) for buildings of type
© = A(V,k), ¥ = Ay, B, Cy or Dy, provided that #k is big compared with
£=1k ¥ (cf. Lemma 10 below).

(ii) I will give a concrete description of ©%(¢) in the A,-case: It is well
known that A(Ag k) can be identified with the flag complex © = Flag i/
associated to the poset I/ of all non-trivial, proper subspaces of kf*!. Two
vertices Up,U, of © are opposite in © iff Uy & Uy = k**1 (consider an
apartment containing U; and U;). Therefore, a simplex 7 = {T1,...,T,} of
© is opposite to ¢ = {S1,...,5,.} iff ;&S = k' (1 <i < r) for an
appropriate numbering of the vertices. This implies

Q% 0)=Flag{U eu| (UNS; =0 Vv U+ S; =k vi<i<r}

It is shown in [AA] that the complex on the right-hand side is (£ — 1)-spherical
if #k> 21 (:71) » where d; :=dim; .

Hence A(Ag, k) possesses property (S) for all fields with at least 2¢-!
elements.

(iii) Group theoretically, property (S) admits the following interpretation:
Let © be the spherical building associated to a root datum (S, (Ve)sew) ,
Il abaseof ¥, V®:=(Vy|lbe€ (LyeniaNoa)N¥) for a €I, V :=
[lscu+ Voo B=SV and C the chamber stabilized by B . The following two
observations are due to Tits (cf. [T2], section 16):

Assume tk ¥ =2 . Then |©°(C)| is O-connected iff V =(V,|a €l).
Assume tk ¥ =3 . Then |©°(C)| is l-connected iff V is the amalgamated
product of its subgroups V¢, aelIl.
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More generally, for tk ¥ == m  ©%(C) is (m — 1)-spherical iff the
system {V% a €Il} is (m— 1)-generating for V in the sense of [AH], because
©°(C) may be identified with the nerve of the covering

V= U v Ve,
7

Note that one can replace V,V® by B,B% = SV?® in the last statement.
Furthermore, similar results may be obtained for ¢ C C, P = Stab(c) and
0%ao) .

(iv) Finally, a trivial remark: In the following, we may concentrate on
spherical buildings with connected diagrams, because the join ©; %@y possesses
property (S) iff ©; and ©; possess property (S) . ]

Now we are interested in spherical buildings of type A, & A(®,,F,) for
z € V. Note that the Dynkin diagram diag{®,) of &, is a proper subdiagram
of the extended Dynkin diagram diag(®)™~ (assume z € |Cp| and consider the
base of ®, corresponding to the walls of Cy containing z). Summarizing the
results we have put together so far (in particular Lemmata 6 — 8 and Corollary
5), we obtain:

PROPOSITION 1: Assume that A(¥,F,) possesses property (S) for every
reduced irreducible root system ¥ with diag(¥) C diag(®)~ . Then T =
G(F,[t]) is of type F,_, but not of type FP, .

2.4 CONCLUSIONS. In order to apply Proposition 1, one needs some information
about the homotopy type of |8%(g)| for ® = A(VL,F,) and o € © . As
already announced, this problem will be treated in detail elsewhere. Therefore,
I will only list the consequences of [Abr2] and [AA] (see also Remark (ii) above),
as far as they are relevant to us here. I only mention in passing that results
concerning more general buildings of type C, may also be found in [Abr2] and
that, amazingly enough, the Dy-case is much more difficult.

LEMMA 10: A(¥,k) possesses property (S) if
(i) ¥ = A, and #k> 21,
(ii) ¥ = By and #k > 2%},
(iii) ¥ = C, and #k > 222,
(iv) ¥ = D, and #k >2%°1,

Together with Proposition 1 this implies:
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THEOREM 1: The following groups are of type F,,_, but not of type FP,:
(i) SLn41(Fq[t]) provided that q > 2™~
(ii) Sping,,,(F,[t]) provided that g¢ > 22",
(iii) Sps, (F,[t]) provided that ¢ > 22"~2

(iv) Spin,,(F,[t])  provided that ¢ >2?"~1,
|

Final Remarks: (i) Theorem 1 (i) is the main result of [Ab2]. Using a concreter
model of the Bruhat-Tits building in terms of classes of lattices and a filtra-
tion especially adapted to this case, a quantitatively slightly better version with
boundary condition ¢ > max?_) (*;!) was proved in [Abrl].

(ii) It is easy to get rid of the simple-connectivity of the algebraic groups
in Proposition 1 and in Theorem 1:

Let G’ be an arbitrary Chevalley group of type ® . Consider a central
isogeny f: G— G’ . Because f maps S-arithmetic subgroups of G onto
S-arithmetic subgroups of G’ (this is well known, cf. for example [M], Corollary
3.2.9), f(I) and G'(F,[t]) are commensurable. In particular, G(F,[t]) and
G'(F,[t]) possess the same finiteness properties.

(iii) Of course, one can also pass over to non-simple Chevalley groups now,
provided that they do not contain any factor of type FEg,FEr,Es or Fy (the
case G is settled in [Be2]). This is due to the fact that a direct product
I'=T; x---xTI, is of type FP, iff all factors I'; are. |
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