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ABSTRACT 

Let G be  a s imple  Cheval ley group of  rank  n and  

F ---- G(Fq [ t ] ) .  T h e n  t h e  f ini teness l eng th  of  F shall  be de t e rmined  by 

s tudy ing  t h e  act ion of F on the  Bruha t -Wi t s  bui lding X of G__ (Fq( (1) ) )  . 

Th i s  is always possible provided t h a t  cer ta in  subcomplexes  of t he  links 

of simplices in X axe spherical.  As a consequence,  one obta ins  t ha t  F 

is of  type  Fn-1 b u t  not  of  type  FPn if G is of  type  An,Bn,  C,~ or 

Dn and q > 22n-1  . 

Introduct ion  

Important finiteness conditions for discrete groups are the almost equivalent 

(whether they are in fact equivalent, is still not known) properties FPn and 

Fn • Recall that a group is said to be of type FPn iff there exists a projective 

resolution of the trivial F-module Z starting with n + 1 finitely generated 

projective modules. F is by definition of type Fn iff there exists an Eilenberg- 

MacLane complex K(F, 1) with finite n-skeleton, i.e. (cf. [Brl], ch. VIII, §7) 

iff F is of type FPn and finitely presentable for n _> 2 .  

Now some famous results based on reduction theory and due to Raghunathan 

(cf. [Ra]), respectively to Borel and Serre (eft [BS1], [BS2]) imply that  F is 

always of type F ~  (:= F~ for all n) if F is an arithmetic group or if F is an 

S-arithmetic subgroup of a reductive group which is defined over a number field. 
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Things are quite different in the function field case. For example, SL2(Fq[t]) is 

even not finitely generated (cf. [N]). In [Bel], Behr proposed and in [Be2], he 

gives a proof for a complete classification of all finitely presentable S-arithmetic 

subgroups of reductive groups over global function fields involving the local ranks 

of these groups. By the way, the finitely presented S-arithmetic subgroups of 

arbitrary algebraic groups over number fields were characterized by Abels (cf. 

[Abl]). 

By contrast, only a few facts are known concerning higher finiteness properties 

of S-arithmetic groups in the function field case, if the global rank of the reduc- 

tive group is greater than 0. (Using Harder's reduction theory, Serre settled the 

anisotropic case in Thdor~me 4 of [Se]: Here F is always "cocompact" and hence 

of type F~  .) In [Stu], Stuhler showed that SL2(Os) is of type Fs-1 and 

not of type FPs for every S-arithmetic ring Os with # S  = s. On the other 

hand, SLn+l(Fq[t]) is of type Fn-1 and n o t o f t y p e  FP,~, provided that q 

is "big enough" (cf. [Abrl], [Ab2]; why one is forced by the method of the proof 

to impose certain restrictions on q, will become clear in section 2.3 below). 

In this paper, we will be concerned with the following generalization of the last 

mentioned result: 

CONJECTURE: If G_.G_ iS a simple Chevalley group of rank n ,  then F = __G(Fq [t]) 

is of type Fn-1 but not of type FPn • 

In the following, this conjecture will be proved for the four classical infi- 

nite series of Chevalley groups, again provided that q is big compared with 

n. As in [BS1], [BS2], [Stu], [Abrl], lab2] and [Be2], it will be important to 

study the action of F on the space "naturally" associated with F, i.e. on 

the Bruhat-Tits building X of G 1 (Fq(('~))) in our case. The quotient X / F  

being non-compact, one has to do some extra work in order to derive finite- 

ness conditions for F . The approach of [BS2], namely compactifying X by 

adjoining the spherical building at infinity, doesn't look very promising in our 

situation because the stabilizers of the ideal simplices at infinity possess bad 

finiteness properties. Therefore, the method introduced by Stuhler and also used 

in [hbrl], lAb2] and [Be2] will be applied: We filter X = [.Jd~r% Xd by F- 

invariant subcomplexes Xd with compact quotients Xd/F and investigate 

the homotopy properties of the inclusions Xd c )Xd+I • This leads to the 

study of the local structure of X and in particular to the question whether 
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certain subcomplexes of spherical buildings are spherical, themselves. Using 

the answer to this question given in [AA] and in [Abr2], a criterion of Brown 

(cf. [Br2]) implies the desired finiteness properties of F .  

The paper is organized as follows: In Section 1, we put together the facts 

concerning Bruhat-Tits  buildings as far as they are needed here. We start by 

reviewing some results of [BT1] in sections 1.1 and 1.2. In 1.3 we study the action 

on A~ of the stabilizer P[~[ of a ray [x[C X with origin x, where Ax is the 

link in X of the simplex generated by x. This is of some relevance, because 

P[x[ acts in the same way on A~ as F~ = Stabr(x) , as we shall see in section 

1.4. Section 1 may be of some interest in its own right, because it yields a nice 

example for the interplay between group theoretic, combinatorial and geometric 

aspects of Bruhat-Tits  buildings. Furthermore, a more elementary proof for a 

theorem of Soul~ (cf. IS], Theorem 1) describing the "reduction theory" for the 

action of F on X is indicated in the remarks following Corollary 3. 

In Section 2 it is shown how finiteness properties of F may be derived from the 

action of F on X .  For this purpose, the F-invariant filtration X = Ud~:No X d 

introduced by Abels in [Ab2] while investigating SLn+l(Fq[t]) is recalled in 

section 2.2. In order to study the homotopy properties of Xd c- )Xd+I , it 

is now essential to determine the "relative links" tkxd (p) of certain simplices 

p E Xd+l \ Xd . In his paper, Abels did this by using some special features of 

the An-case (cf [Ab2], §5). A different approach which works for all Chevalley 

groups is presented in section 2.3. It uses the action of Fp on tkx(p) and the 

results of Section 1. It turns out that  the subcomplexes tkx~ (p) of the spherical 

building ikx(p) are among those which are studied in [AA] and [Abr2] (in fact, 

this is the main reason why these papers were written). In particular, they are 

homotopy equivalent to bouquets of spheres if G_ is of type An, Bn, Cn or Dn 

and if q is big compared with n. Therefore, by applying a special version of 

Brown's criterion which is stated in 2.1, we obtain the results announced above 

in section 2.4. 

The main ideas and most parts of the argumentation underlying the present 

paper were developed during a stay at the University of Bielefeld in 1989/90 

when I was a guest of the SFB 343. Now, as the paper is written down at last, 

it is a pleasure for me to thank this institution for the opportunities it offered 

to me and Herbert Abels for his kind invitation. Finally, I would like to express 

my thanks to him and Helmut Behr for several stimulating discussions on the 
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subject which is treated here. 

1. T h e  B r u h a t - T i t s  bu i ld ing  

1.1 PRELIMINARIES. Unfortunately, we shall need a lot of notations throughout 

this paper. To begin with, we denote by 

V an n-dimensional real vector space, endowed 
with an inner product (.,.) : V × V ,R, 
identified with its dual space V* by means of 
(.,.) and sometimes also considered as an affine 
space 

4 an irreducible and reduced root system (of rank 
n) in V 

II a base of 4 

4+ the corresponding subset of all positive roots 
of ~); 
4 -  = - 4  + 

v w  = w ( ~ )  

w = w ~ ( v )  

a_a_ = a (4 )  

T_ 

the (finite) linear Weyl group of 4 

the (infinite) affine Weyl group of 

a simply connected Chevalley group of type 4,  
defined over Z 

a maximal torus of G_G__ with normalizer N 

xa : Add 

U + =  l-I 
aE~ + 

__G c- , SL~ 

K 

~ ~  

u~ 

the one-dimensional unipotent subgroup of G 
associated to a E 4 

the corresponding isomorphism 

(.Add = additive group) 

and U - - -  11 U~ 
a E ¢ -  

a faithful representation of G__ such that  T_ 
becomes diagonal, _U_U + upper and _U- lower 
triangular 

a (commutative) field endowed with a discrete 
valuation w : K --~ Z U ( ~ }  
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0 = {A e KI w(A) >_ 0} 

k = O/TO 

G = G(K) C_ SLy(K) 

G_(R) = G M SLy(R) 

Further notations are 

the corresponding discrete valuation ring 

a prime element in O , i.e. w(Ir) = 1 

the residue class field associated to (K, w) 

the group of K-rational points of G_ 

the subgroup of G associated to a subring 
R C K  

T =  T ( K ) ,  H =  T(O) ,  N =  N ( K ) =  N c ( T ) ,  

U~ = Ua(K) = {x~(A)[ A E K} (a e (I)) and 

B = U + ( O ) H U - ( r O )  • 

(T, (Ua)ae~) constitutes a generating root datum ("donn~e radicielle") in G 

(cf. [BT1], exemple 6.1.3 b)). Furthermore, w induces a valuation ~o of 

(T, (Ua)ae¢) (cf. [BT1], exemple 6.2.3 b)). According to [BT1], section 6.5 

(compare also [IM], §2), G possesses a "double Tits system". Note that the 

group denoted by G ~ there coincides with G in our situation because G 

is simply connected. In particular, the groups B and N introduced above 

constitute a BN-pair for G with Weyl group N / H  = W . 

We denote by A = A(G, B) (notation as in [Br3], section V.3) the associated 

affine building, by Co the "standard chamber" fixed by B and by 5]o the 

"standard apartment" stabilized by N . The geometric realization 15101 of 5]0 

will be identified with V in such a way that the vertex with stabilizer G_(O) 

becomes the origin of V and that the cone U~>o A ICol is equal to the closure 

of the Weyl chamber corresponding to YI .The set IA[ will be endowed with the 

metric introduced in [BT1], section 2.5. The metric space X = I A ] is called the 

B r u h a t - T i t s  building of  G (relative to ~o). Note that the topology of X 

coincides with the usual CW-topology iff A is locally finite, i.e. iff k is finite. 

1.2 STABILIZERS AND LINKS. Recall that the set of hyperplanes 

7 - l : { L a , , ~ i a C O ,  m E Z } ,  

where L~,,n = {x E V[ (a, x) + m = O} , induces a partition of V into cells 
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("facettes"). For every cell F C_ V we denote by F its closure, by aF E Eo 

the simplex with laF] = F and by PF the stabilizer PF := S t a b G ( F ) =  

StabG(F) -- StabG(aF). To every point x E V we associate the cell Fx 

containing x ,  the simplex a~ = aF, and the stabilizer Px = StabG(X) = PFx- 

If we define U~,g := {x~(~)l w(A) > g} (a E ¢, g E R), we obtain (cf. [BT1], 

Proposition 6.4.9) Ua n P~ = U~,_(a,~) and 

(1) P~ = H(U~,-(~,x)I a E ~) 

= I-I u~,_(~,~). 1"] u~_(a,~). (N n Px). 
a E ~ +  e E l -  

Furthermore, there exists a normal subgroup P* _ P~ 

Ua n P* = (x~(~)[ w(A) > - ( a , x ) }  =: U~,_(~,x)+ for all a E ¢ and 

such that 

(2) P* = ( H  n a e 

= 11 U~,_(~,,)+. l-I U~,_(~,,)+. (HM P;) 
a E #  + a E ~ -  

(cf. [BT1], 6.4.23, 6.4.27 and 7.2.7). Define G~ := Px/P* , denote by 

Px : Px  --~ Gx the associated epimorphism and set 

¢~ := {a E ~l (a,x) E Z}, T := p~(H), -U~ := p~ (U,,_(,,~)) 

for all a E ~ , .  

Applying Proposition 6.4.23 of [BT1], we get: 

LEMMA 1: (T, (Ua)ae¢~) is a generating root datum of type ~ in G~ . 

Lemma 1 implies, as we shall see immediately, that the subgroup G~ := 

(U~] a E ~ )  of G~ is a Chevalley group in the sense of [St]. First of all, 

we have 

-Ua ~- Ua,-(a,x)/U~,-(~,,)+l ~ Add(k) for all a E ~x • 

Set xa(~) :-- px(xa(Tr-(~'*)~)) for ~ E O, ~ E k and verify the usual Steinberg 

relations, those corresponding to Steinberg symbols included (cf. [St], §6). In 

Gx k - *  G,  , where G__~ this way we obtain a well-defined epimorphism f : __ (  ) _-=o 

denotes the simply connected Chevalley group (scheme) of type ~ , .  Because f 

is compatible with the respective root data of G,(k)  and G x , parabolics which 
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are mapped onto minimal parabolics by f are minimal, themselves. 

k e r f  has to be contained in a minimal parabolic subgroup of G , ( k )  

in the center of G, (k )  . To summarize: 

COROLLARY 1: 

• ~ then G~(k) 

209 

Therefore, 

and hence 

I f  G_._~ denotes the simply connected Chevalley group of type 

is a central extension of Gx = (-ff ~l a • ~ ) .  

This group theoretical result may be translated into a statement about the 

local structure of A : Recall that the link of a E A in A is defined to be the 

subcomplex t kA(a)  := {r E A I TU.o" • A and TMa = 0}. If a is contained in 

Co then B = Stabc(C0) and N M P  constitute a BN-pair  for P = Staba(a) .  

It is easily checked that  tkA(a)  may be identified with the building A(P, B) 

in this case. If x • V = IEol is arbitrary, we choose a chamber C • Eo such 

that x •  ICI and obtain Ax : = ~ k ~ ( a x ) - - - - A ( P x ,  P c )  because A m a y b e  

described as A = A(G, Pc) as well. Formulae (1) (applied to an element x '  

of the interior of ]C I which is close to x) and (2) above imply P* C_ Pc. This 

allows us to identify A(P~, Pc )  with A ( ~ ,  Pc /P*)  which is the spherical 

building associated to (T, (Ua)ae¢.) .  Finally, Corollary 1 and the discussion 

preceding it show that  A(G~, P c / P * )  is isomorphic to A((I)x, k ) : =  A(Gx, k), 

the building of G___z~ over k in the sense of [T1], §5. Therefore, we obtain as a 

further consequence of Lemma 1: 

COROLLARY 2: Ax = tkA ( ax ) is isomorphic to the spherical building A ( ~ , ,  k) 

associated to Gx(k)  • 

I will conclude this section by remarking that  deeper results concerning group 

schemes attached to points of X may be found in [BT2], section 4.6. 

1.3 SOME GEOMETRY CONCERNING n .  Let D be the Weyl chamber corre- 

sponding to H , i . e .  D =  { z • V i ( a , z )  > 0  V a • I I } , a n d l e t  x ¢ 0  be an 

element of the closure D. For reasons which will become clear later (cf. Lemma 

5), we are interested in the subgroup P[~[ :-- N)~_l P)~x of  Px • In particular, the 

action of P[~[ on A~ will be studied. Before doing this, we have to introduce 

some terminology: 

Set 7/~ := {La,-(a,~)l a • ~ }  = {L • 7-/I x • L} . Choose an open ball U 

with center x such that  U A L = 0  for all L • 7 - / \ 7 / ~ .  Then U N ( x + D )  

is a nonempty open convex subset of V satisfying U N (x + D) n L = 0 for all 

L • 7-/. Hence, there is a unique open n-cell C = Cx,o containing U M ( x + D ) .  
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Now consider the ray [x[:= {)~x] A >_ 1}. Then x E n and U N (x + D) C C 

imply [x[nC # {x}.  Therefore, we may define a point y E [x[ \{x} by setting 

ix, u] = [x[nU. (I use the notations ix, y] := {(1 0 < < 1}, [x,y[:= 
[x, y] \ { y }  and so on.) Furthermore, we introduce the simplices c~[~,u] := a .  U(ry 

and ~y := a[.,y] \ a~ E A. .  

Recall (cf. Lemma 1) that G := G~ possesses a Tits system, that 

B:=T H -Oa=p~(Pc) 

is a minimal parabolic subgroup of G and that A(G, B) is isomorphic to 

As = ~kz~(a~). What will be proved next is the fact that the parabolic subgroup 

p.(P[.[) is the stabilizer of Yy in G . 

LEMMA 2: Set ~o : =  { a E  ~]  ( a , x )  = 0 } .  Then 

B W ( ~ ° ) B  = p,(P[~[) = p,(P~ n Py) = Stabu(~y ) =: Py.  

Proo~ First we list some consequences of [BT1], 6.4.9, 6.4.10 and 7.4.4, namely, 

= 11 Ua,-(a,.) • rI Ua,o. (N o P[~[) , 
aE(I,+ aE(I'- n(I '° 

N n P [ . [  = N M H ( U ~ , o l a E ~ ° )  and 

( i  N P[~[)/H ~- W((~°) . 

These equations imply B W ( ~ ° ) ~  = Pz (P[.[). The inclusions 

p~(P[~[) C_ p.(P.  N Pu) C Pu 

are obvious. So it suffices to show r k B W ( ~ ° ) B  = r k P  u, where the "rank" of 

a parabolic subgroup P is by definition the maximal natural number g such 

that  there exists a strictly increasing chain of parabolics of the form Po C P1 C 

• -. c Pe = P .  Hence 

and 
aEq~ ° _ 

r k P y  = r k G - # ~ y = r k ¢ ~ - # ~ y .  

But #~y,  the number of vertices of ~y, is easy to calculate: 
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m 

dim]a.[  = d i m F . = d i m  N La,_(a,.) 
aECI% 

: dim(x+ n L a , o ) = n - r k ¢ . ,  
aE¢~ 

diml%,yll = dim N L = dim N L 
[z,y]C L E'H [O,z]CLE?-/ 

= dim N La,o = rt - rk ¢o. 
a E ¢  0 

Therefore, # ~  = #a[.,y] - #a~  = rk q~. - rk q~o, 

r k P y = r k q ~ °  and P y = B W ( ¢ ° ) B .  

In Section 2, we shall also need a result concerning the construction "opposite" 

to that we have discussed so far. Let C -  = C~,-D be the n-cell containing 

U N ( x - D )  and set ]x] := {Ax[ A_< 1}.  Define y -  by [y-,x] =]x]nC- and 

Py- E A .  by ~y- = a[y-,.] \ a~ . Note that C -  needn't be contained in D 

but y -  certainly is. 

0 

D 

Denote by n, n -  the chambers of A~ 
such that Inl C_ C, I~-I C_ C - ,  respec- 
tively (see Figure 1, where x is a ver- 
tex). Then Stabu(~ ) = B, S t abu (n -  ) = 

Tl- Iaco_n¢ * Ua =: B - .  This shows that 
n and to- are opposite chambers of A~ in 
the sense of IT1], 3.22. Besides, we ob- 
tain: 

Figure 1 

LEMMA 3: ~y and Vy- are opposite in Ax • 

Proof: Because 

dim la[y-,x]l = dim N L = d i m  N L=dimta[x,y] I, 
[y- ,x]C_Le TI [~,y]C Le ~ 

the same argumentation as in the proof of Lemma 3 shows 

S t a b u ( ~ - )  = p . ( / ~ ] )  = B -  W(q~°)B - . 



212 P. ABRAMENKO Isr. J. Math. 

Denote by w0 E W ( ~ )  the unique element with w0(¢ + n ¢~) = ~ -  o O~ . It 

follows that 

Stab~(~y-)  = wo(-B w o l W  ( O°)wo-B)wo 1 . 

Comparing types, we see that this is also the stabilizer of the simplex opposite 

to Pu in the apartment E0 O A~ (cf. [Wl], 2.39, and [R], Lemma 6.1). Hence, 

~y- is this simplex. | 

1.4 AN ALTERNATIVE DESCRIPTION OF f lx(Fx) .  

a more special situation: 

g = k(t) 

In the following, we consider 

is the rational function field over k 

w = woo is defined by w( ~ ) := deg g - deg f V  O C g, f e k[t] 
1 
t 

F = G(k[t]) 

The notations introduced so far will be kept. Additionally, we set 

F z : = S t a b r ( z )  ( z E X o r z e A )  and C a : =  n r x  ( f t C X ) .  
sEgt 

The significance of the sector ("quartier") D in this situation comes from a 

result which is due to Soul6 (cf. IS], Theorem 1): 

LEMMA 4: D is a fundamental domain for the action of F on X and the 

simplicial complex F C Eo with [F[ = D is a simplicial fundamental domain 

for the action of r on A. 

We shall also need the following 

LEMMA 5: p~(F~) = p~(P[~[) for every x E D \ { 0 } .  

Proof: By the definition of P* (cf. [BT1], 7.2.7), 

H = T(O) = T(k) (H N P*) 

and hence p~(H) = p~(T(k)) C px(G) =: Fx • Furthermore, 

F~ = p~({z~0r-(~'~)A)l A e k}) c_ r~ for all a e (~+ n Ox) u ¢ °. 

Hence p.(P[.[) C_ F~. 
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We shall show that F ,  cannot be strictly bigger than p~(P[,[) . Suppose it 

were. Then there would exist a root b E ((I)- n (I),) \ (I) ° such that  Ub C F ,  . 

In particular, there were u + E U+VIP *, u -  E U - A P * ,  h E H and ~, E F such 

that xb(rr -(b,*)) u -  u + h = 7. An easy calculation using O* nk[t] = k* shows 

V;-(g) US(K) Tr(O) n SLr(k[t]) = UT(k[t]) U+(k[t]) T~(k) . 

Therefore, we would obtain 

: =  - e U -  n r = IF[  v o ( k [ t ] )  

a E ¢ -  

(the last equation 

- ( b , x )  > 0 and 

follows from Lemma 49(b) in [St]). On the other hand, 

U E Xb('ff-(b'x))gb,_(b,x)+l H Va 
a~¢- "-{b} 

I imply u • 11 Ua(k[t]), a contradiction. 
aEq'-  

The title of this section refers to the following consequence of Lemma 2 and 

Lemma 5: 

COROLLARY 3: p x ( F x )  ---- Pu • 

Remarks: (i) The origin was excluded in Lemma 5 in order to get a well-defined 

ray [x[ . Of course, po(ro) = po(Po)  = po(a__(O)) is easy to prove. Using the 

definition of H M P* , it is also possible to identify this group with G(k) . 

(ii) Lemma 5 is an immediate consequence of F ,  = F[,[, an equation derived by 

Soul~ in section 1.1 of [S]. His proof depends on the technically rather complicated 

§9 of [BT1], where the proof of the result he refers to is only sketched. Therefore, 

I preferred showing p~(F~) = p~(P[~[) differently. Having done this, we can 

easily deduce F ,  _C P[x[P; C_ P~, Fx C Fy, F~ = F[~,y I and, "by induction 

along [x[ ", F~ = FI l l .  

(iii) The identity p~(r.) = ~ W ( ¢ ° ) ~  is the key argument in the proof of 

Theorem 1 in [S]. By modifying section 1.3 of [S] as well, it is possible to derive 

this theorem (which we quoted as Lemma 4) more elementary without referring 

to §9 of [BT1]. I 

As was already pointed out by Soul~, a further consequence of F~ = El,[ is: 
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COROLLARY 4: 

= T ( k ) .  ( G ( k ) l  a • 
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H {x~(f)[ f • k[tland deg f <_ (a, x)}. 

In particular, Fx is finite iff k is finite. 

2. Bui ld ings  a n d  finiteness properties of  G(Fq[t]) 

2.1 BROWN'S CRITERION. 

Let F be a group and let X be a F-CW-complex, i.e. a CW-complex on 

which r acts by homeomorphisms permuting the cells. In this section, we shall 

recall some conditions derived by K.S. Brown (of. [Br2], Corollary 3.3(b)) which 

allow to determine the finiteness length of F .  

The specialization of Brown's criterion stated below is adapted to the require- 

ments of certain applications. A similar lemma was already discussed in [Abrl], 

§2 (cf. also [Ab2], Lemma 4.2). 

Before stating the criterion, I wish to recall a notion introduced by Quillen 

(cf. [Q], section 8) which will be crucial in the following: 

Definition 1: 

(i) An m-dimensional CW-complex is called m-sphe r i ca l  iff it is homotopy 

equivalent to a bouquet of m-spheres, i.e. iff it is either contractible or 

non-contractible and (m - 1)-connected. 

(ii) A simplicial complex is called m-spherical iff its geometric realization is 

m-spherical. 

LEMMA 6: Let X be a F-CW-complex. Suppose that the following holds: 

(a) X is contractible. 

(b) The stabilizers F~ are finite for all cells a . 

(c) X = Ua~No Xa with F-invariant subcomplexes Xa which are finite rood 

F for all d .  

(d) Xa+x = Xd U Ui~i~ Si,d with contractible subcomplexes Si,d such that 

(i) S i , d n S j , d C X d  V i ¢ j , d .  

(ii) Si,d n X d is (n  - 1) - spher i ca l  V i, d. 

(iii) There exist infinitely many d such that Si,d['lX d is non-contractible 

for at least one i E Ia . 
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Then F is of type F~_l but not of type FP,~ . 

215 

If F = G__(Fq [t]) and if X is the corresponding Bruhat-Tits  building then 

it is well known that  condition (a) is satisfied (cf. [BT1], Propsition 2.5.16). The 

second assumption follows from Corollary 4 (and is of course well known as well). 

After one has constructed a suitable filtration of X, condition (d) (ii) is hardest 

to verify. This task splits into two parts: 

Firstly, one has to describe the intersections S~,d M Xd explicitly as sub- 

complexes of certain spherical buildings. We will do this in section 2.3. Secondly, 

the homotopy properties of these complexes have to be determined. This part re- 

quires completely different methods and will, therefore, be treated elsewhere ,(cf. 

[AA] for the A~-case and [Abr2] for subcomplexes of other spherical buildings). 

2.2 ABELS' FILTRATION. Let A be a building. Fix a chamber Co • Denote 

by d(C,C') the gallery-distance between two chambers C and C ' of A .  Set 

d(a,a') := min{d(C,C')l a C_ C and a '  C_ C'} for simplices a,a' E ~ and 

d(A, B) := min{d(a, T)I a E A and T E B} for non-empty subsets A, B C_ ~.  

Assume additionally that  we are given a group F acting (by simplicial auto- 

morphisms) on A together with a subcomplex F C z~ containing Co which 

is a s implicial  f u n d a m e n t a l  d o m a i n  with respect to this action. Then there 

exists a simplicial retraction r:/X ~ F mapping every simplex a onto the unique 

element of F a n  F. 

Following lab2], §2, we define a F-invariant filtration of/k by setting 

(3) Aa := {a E A Id(a, FCo) < d} , d E No. 

Note that d(a, FCo) = d(ra, Co) implies 

(4) Aa = FFd with Fd := {T E F I d(T, Co) _< d}.  

By Lemma 2.4 of [Ab2], every chamber C E Ad+l \ Ad contains a simplex 

Rr(C),  called the "F-restriction of C", which satisfies 

c cI  a e = c__ e l  Rr(C)} .  

We set Rd+l :---- {Rr(C)I C is a chamber in Ad+I \ Ad} and associate to every 
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p • Rd+l the following subcomplexes of A : 

S(p) :=stA,+,(p) = { a e A [ a U p E A d + l } ,  

T'(p) :=ekA,+,(p) = { a • S ( p ) l a n p = O } ,  

T(p) := S(p) n ,%. 

LEMMA 7: With the notations introduced above the following holds: 

(i) Ad+l = Ad U UpeR,~+~ S(p), 

(ii) S(p) n S ( p ' ) C _ A  d V p ~ p '  ERd+l,  

(iii) T(p)  = Op • T'(p) , where Op := {a C_ p[ a ~ p} and "." means '~ioin", 

(iv) T'(p)  ~ T'(rp)  V p E Rd+l and 

T'(p) = Fp{cr C_ projpCol a rl p = 0} V p E R4+1 n F.  

Proo['. Statements (i) - (iii) are due to Abels (cf. [Ab2], Lemma 4.2). The 

isomorphism in (iv) follows from T'(Tp) = ~fT'(p) for all ? E F. 

Now assume p E Rd+l n F. Denote by C := projpCo the projection of 

Co on p (cf. IT1], 3.19), i.e. C is the unique chamber satisfying C _D p and 

d(C, Co) = d(p, Co) • Then d(p, Co) = d(p, FC0) = d + 1 implies C E Ad+I 

and hence r p { a  C_ C I a rq p = 0} C T'(p) . 

Conversely, let V E T'(p)  be given. Choose a chamber C ' E Aa+l such 

that  T U p  C_ C' . Then d(rC' ,Co) = d(C',FCo) < d +  1 and p C_ rC'  

imply rC' = projpCo = C . Hence there exists a "y E F such that  3,C ~ = C . 

Furthermore, "rP C_ -rC ' = r C  E F implies - /E F p .  This shows 

2 .3  T H E  RELATIVE LINKS. W e  now return to the situation described in section 

1.4, assuming additionally k = Fq. In particular, A = A(G, B) is an affine 

building, F = _G(Fq [t]) and F is the simplicial fundamental domain introduced 

in Lemma 4. 

We wish to apply Lemma 6 to the F-CW-complex X = IAI by setting 

Xd := lAd] , where Ad is defined as in (3). Note that condition (c) follows 

immediately from (4). Furthermore, Lemma 7 (ii) implies (d) (i) if we define the 

S~,d to be the IS(p)[ for p E Rd+l • 

As already mentioned, our next task consists in determining IS(p)l n x a  = 

IT(P) I. In view of Lemma 7 (iii), we only need to know T'(p) and in view of 7 (iv), 
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we may assume p E Rd+l M F . Choosing a point x E D such that  p = a x ,  we 

therefore have to describe T'(p)  as a subcomplex of gka(p) = Ax _~ A (¢~,Fq) 

(cf. Corollary 2). This will be done by using the results and the notations of 

sections 1.3 and 1.4. In the following, the relation "a is opposite to r" will be 

abbreviated by " a o p  r" .  

LEMMA 8: Let p E Rd+l N F, x E D and ~y E Ax be given such that p = ax 

and ~y is defined as in Lemma 2. Then one gets 

T ' ( ; )  = U . 
~- op ~ 

Proo~ Set C := proj.C0 E F (this chamber C has to be carefully distinguished 

from the open cell C = C~,o in section 1.3[) and recall T'(p)  = F . {a  C_ C \ p} 

(cf. Lemma 7 (iv)). As a first step in our proof, we have to determine "the 

position of I C \ p ]  relative to ]Pl in D". Note that C \ p  needn't coincide 

with the simplex we called ~-  in section 1.3. But in any case, C \ p contains 

the simplex Yu- of Lemma 3 as the following geometric reasoning shows: 

CLAIM: y -  E IV I. This follows from three simple observations. First of all, 

[y-, x] is contained in a closed cell. Hence Fz _D [y-, x] for every z e ]y- ,  x[. 

This implies: 

(a) ]C']n]y-,x[~t O ==~ [y-,x] C_ IC'I Vchambers C ' E  E0. 

Next we consider the "convex hull" C of Co and C ,  i.e. the set of chambers 

C := conv {Co, C} := {C' E E0[ d(Co, C') + d(C', C) = d(Co, C}. Then [Cl := 

Uc,~c IC'l is an intersection of closed half-spaces (cf. [T1], Theorem 2.19) and 

hence a convex subset o f  IE01 -- w. Therefore, we obtain 

(b) [0,x] C_ I cl .  

On the other hand, d(Co, C') > d(Co, p) = d(Co, C) holds for every chamber 

C' containing p and hence 

(c) x e lC'l ¢=~ C' = C V C' E C. 

Obviously, (a) - (c) imply y -  E ICI • Therefore, a u- c_ C and ~u- C_ C \ p .  

In view of p~(Fp) = p~(r~) = Stab-oc,(~y ) (cf. Corollary 3) and in view of the 

fact that  ~y and au-  are opposite in A~ (cf. Lemma 3), Fp{a C C \ p} = 

U~opv, s ta .  (7-) is now a consequence of the following lemma. 

LEMMA 9: Let A be a group acting type-preservingly and strongly transitively 

(in the sense of [Br3], section V.1) on a building 0 of spherical type. Then for 
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every a E O, A~ := StabA(a) acts transitively on the set 

{C  E O I C is a chamber and 3 T C_ C such that  7 op c~} 

Proof: It follows from the assumptions that A~ acts transitively on the set of 

all apartments containing a. Every such apartment contains exactly one simplex 

opposite to a. Hence, Ao acts transitively on the set of all these simplices. 

Now let r be a simplex opposite to a and let two chambers C1, C2 E 

Sto(T) be given. Then there exists an apartment E containing C1, C2 and a: 

Set C~ := p r o j , C 2 .  Then C2 -- proj~C~ (cf. [T1], Theorem 3.28). Therefore, 

an apartment E containing C1 and C~ contains C2, too. Now we set N := 

StabA(E). According to the assumptions, there exists an n E N~ := Stabn(~-) 

such that  nC1 = C2. But N~ = No C A~. I 

As a first consequence of Lemma 8, we now obtain condition (d) (iii) of 

Lemma 6: 

COROLLARY 5: There are infinitely many  d E N such that  IT(p)[ is non- 

contractible for at least one p E Rd+ l • 

Proof: If d imp = n - 1 , d im/ka (p )  = 0 . Then Lemma 8 implies T' (p)  = 

A~ \ { y y }  which consists of at least two points. Hence IT(p)] = lop • T'(p)] is 

non-contractible in this case. 

Now there are infinitely many d such that  Rd+I contains elements of 

dimension n - 1: Let v be an arbitrary vertex of F,  say of type i, such that  

str.o(v ) C_ F .  Set C' := proj,Co and let C be the chamber "opposite" to C ' 

in st~o(v ) , i.e. C \ { v }  and C' \ { v }  are opposite in ~kr.o(v). Then the usual 

restriction R ( C )  of C with respect to Co , i.e. the smallest simplex a C_ C 

satisfying d(a, Co) = d(C, Co), is obviously the panel of cotype i of C. Finally, 

C E F implies Rr (C)  = R ( C ) .  I 

In the following, we fix the notation already introduced in Lemma 8 and 

use it in order to distinguish certain spherical buildings: 

Definition 2: Let e be a building of spherical type. 

(i) For every simplex a E O , we set O°(a) := U s t O ( T )  • Note that  
r o p a  

O°(O) = O is admitted here. 

(ii) We say that  {3 possesses p r o p e r t y  (S) if O°(a) is d ime-spher ica l  for 

every a E O .  
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Remarks:  (i) The well-known Solomon-Tits theorem states that O = O°(0) is 

always spherical. Furthermore, O°(a) is "highly symmetrical" and "contains 

almost all of O", usually (if O is "big enough", "almost all" chambers are 

opposite to a given chamber). So one may hope that  every spherical building 

possesses property (S) . But this is, unfortunately, not true. For example, if 

O = A(A3, F2) and C E O is a chamber, then [O°(C)l is a torus (cf. [W2], 

Remarque 16.7.5 or [AA], Example 3.1). Some further counterexamples are listed 

in [AA] and in [Abr2]. 

Nevertheless, it seems to be true that O always possesses property (S) 

if O is "thick enough", i.e. if every panel is contained in sufficiently many 

chambers. At least it is possible to verify property (S) for buildings of type 

O = A(~,  k) , q2 = Ae, Be, Ce or De , provided that # k  is big compared with 

= rk • (cf. Lemma 10 below). 

(ii) I will give a concrete description of O°(a) in the Ae-case: It is well 

known that A(Ae ,  k) can be identified with the flag complex O = Flag/4 

associated to the poset /4 of all non-trivial, proper subspaces of k e+l. Two 

vertices U1,U2 of O are opposite in O iff U1 @U2 = k e+l (consider an 

apartment containing U1 and U2). Therefore, a simplex v = { T 1 , . . . , T r }  of 

O is opposite to a = { S 1 , . . .  , S t }  ii~ Ti @ Si = k e+l (1 < i < r) for an 

appropriate numbering of the vertices. This implies 

O°(a) = Flag{U E HI (U M Si = 0 v U + Si = k e+l) Yl < i < r}. 

It is shown in [AA] that the complex on the right-hand side is ( e -  1)-spherical 

if # k  > ~ ~-1 (d,-1) ' where di := dimSi . 
i=1 

Hence A(Ae, k) possesses property (S) for all fields with at least 2 e-1 

elements. 

(iii) Group theoretically, property (S) admits the following interpretation: 

Let O be the spherical building associated to a root datum (S, (Vb)beV) , 

II a base of ~2 , V a := (Vb[ b E (~a ,  en \ { a }  N0a') M ~P) for a E I I ,  V := 

YIbe~+ vb, B = S V  and C the chamber stabilized by B . The following two 

observations are due to Tits (cf. [T2], section 16): 

Assume rk q / =  2 .  Then [O°(C)l is 0-connected iff Y = (Va[ a E I I ) .  

Assume rk • = 3 . Then [O°(C)[ is 1-connected iff V is the amalgamated 

product of its subgroups V a, a E H .  
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More generally, for 

system 

O°(C) 

rk k~ --: m O°(C) is (m - 1)-spherical iff the 

{V"[ a • II} is (m - 1)-generating for V in the sense of [AH], because 

may be identified with the nerve of the covering 

V =  U v V  a. 
aEII 
~EV 

V, V a by B, B e = S V  a Note that  one can replace in the last statement. 

Furthermore, similar results may be obtained for a _C C, P = Stab(a) and 

e°(a). 
(iv) Finally, a trivial remark: In the following, we may concentrate on 

spherical buildings with connected diagrams, because the join O1 * 02 possesses 

property iS) iff O1 and 02 possess property (S) .  | 

Now we are interested in spherical buildings of type A~ ~ A(¢~, Fq) for 

x E V. Note that  the Dynkin diagram d i a g ( ~ )  of ~ is a proper subdiagram 

of the extended Dynkin diagram diag(¢) ~ (assume x • ]Co[ and consider the 

base of t x  corresponding to the walls of Co containing x). Summarizing the 

results we have put together so far (in particular Lemmata 6 - 8 and Corollary 

5), we obtain: 

PROPOSITION 1: Assume that A(~,Fq) possesses property (S) [or every 

reduced irreducible root system g2 with diag(k~) C diag(~) ~ • Then F = 

G(Fq[t]) is of type Fn-1 but not of type FPn • 

2.4 CONCLUSIONS. In order to apply Proposition 1, one needs some information 

about the homotopy type of [O°(a)[ for O = A(~,Fq)  and a • O . As 

already announced, this problem will be treated in detail elsewhere. Therefore, 

I will only list the consequences of [Abr2] and [AA] (see also Remark (ii) above), 

as far as they are relevant to us here. I only mention in passing that  results 

concerning more general buildings of type C~ may also be found in [Abr2] and 

that,  amazingly enough, the De-case is much more difficult. 

LEMMA 10: A(g/,k) possesses property (S) i f  

(i) ~l/=Ae and # k  >__ 2 e- l ,  

(ii) g / =  Be and # k  _> 22~-1, 

(iii) ~ = C t  and #k_>22e-2, 

(iv) g / = D e  and #k__22~-1. 

Together with Proposition 1 this implies: 
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THEOREM 1 : 

(i) 
(ii) 

Oii) 

(iv) 
] 
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The following groups are of type F~-I  but not of type FP~: 

SLn+ l (Fq [ t ] )  provided that  q )" 2 n - l ,  

Spin2,~+l(Fq[t]) provided that q >_ 2 2'~-1, 

SP2n(Fq[t]) provided that q > 2 2n-2, 

Spin2,~(Fq[t]) provided that q > 2 2'~-1. 

Final Remarks: (i) Theorem 1 (i) is the main result of [Ab2]. Using a concreter 

model of the Bruhat-Ti ts  building in terms of classes of lattices and a filtra- 

tion especially adapted to this case, a quantitatively slightly better version with 

boundary condition q >_ m n-1 axk:  ° ( , ;1 )  was proved in [Abrl]. 

(ii) It is easy to get rid of the simple-connectivity of the algebraic groups 

in Proposition 1 and in Theorem 1: 

Let G ~ be an arbitrary Chevalley group of type • . Consider a central 

isogeny f :  G----~G ~ . Because f maps S-arithmetic subgroups of G onto 

S-arithmetic subgroups of G'  (this is well known, cf. for example [M], Corollary 

3.2.9), f (F)  and G_'(Fq[t]) are commensurable. In particular, G_G_(Yq[t]) and 

G~(Fq[t]) possess the same finiteness properties. 

(iii) Of course, one can also pass over to non-simple Chevalley groups now, 

provided that they do not contain any factor of type E6, ET, E8 or F4 (the 

case G2 is settled in [Be2]). This is due to the fact that a direct product 

F = F1 x • .- × Fr is of type FPm iff all factors Fi are. 1 

[AA] 

[Abl] 

[Ab2] 

[Abrl] 
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